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Why Other Approaches Do Not Work

❖ Use premade policies [3]
❖ Do not use symbolic representations [4]
❖ Use premade skills and learn their policies [5]
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Main Problem

Can a policy be effectively learned for neuro-symbolic skills 
in Bilevel Planning?
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Motivation

❖ Bilevel planning allows reasoning about ‘what to do’ and ‘how to do it’ [2]
❖ Adding symbolic representation allows for use of efficient AI planning 

algorithms
❖ Learning the policy removes need for human to engineer policies for each skill 

in each task
❖ Learning neuro-symbolic skills can allow for efficient high-level planning

❖ Sequences of neuro-symbolic skills help with explainability of the agent’s 

decision process
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Technical Challenge
❖ Abstracting states to symbolic representations is inherently lossy
❖ 2 Key Desires to overcome this

➢ KD1: Skills can reach multiple physical versions of the same abstract state
➢ KD2: Agent can consider multiple sequences of skills
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Problem Setting: Environment

❖ X is the set of states

❖ 𝜦 is the set of objects

❖ U is the action space

❖ f is the transition function f: X ╳U→X

❖ 𝚿 is the set of predicates
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Problem Setting: Predicates

❖ A predicate is named

❖ Is defined over a tuple of object types

❖ A ground atom is a predicate that takes specific 

named objects

❖ A lifted atom uses variable place holders
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Problem Setting: State Abstraction

❖ Abstract state is state represented in predicate form

❖ Formally: abstract(x) is the set of ground atoms which hold in state x

❖ Note: 

Mapping is not 

one-to-one
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Problem Setting: Tasks

❖ T <O, x0, g, H>

❖ O is the objects in the 

environment

❖ x0 is the initial state

❖ g is the goal state

❖ H is the time horizon of 

the task
Stick Button [1]
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Related Work & Limitations of Prior Work

❖ Earlier paper by the same authors is very similar to this work but they used 

manually designed policies for each skill [3]

❖ Deep skill chaining paper learns skills with learned policies but does not 

represent them symbolically [4]

❖ SDRL represents skills symbolically but does not learn skills wholistically, only 

their policies [5]
○ Also does not address KD1 and KD2
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Proposed Approach: High-Level



CS391R: Robot Learning (Fall 2022) 12

❖ Think of these as abstract actions to plan over

❖ Composed of

➢ Argument object variables

➢ A Symbolic Operator 

➢ A Subgoal Conditioned Policy

➢ A Subgoal Sampler

❖ Abstract transition function F

Proposed Approach: Neuro-Symbolic Skills
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❖ Outer level generates k sequences of skills

➢ Uses A* heuristic search

❖ Inner level iterates over candidate skill sequence from goal to current state

➢ Uses subgoal sampler to generate subgoal for each skill

➢ Uses this subgoal in goal conditioned policy to generate an action sequence

Proposed Approach: Bilevel Planning
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❖ Demonstration is are sequence of states and actions

❖ Preprocess Demonstrations

➢ Segment based on predicates

➢ Partition into similar skills

➢ Lift to variable representations of predicates

❖ Operator Learning

➢ Preconditions and Add/Delete effects follow from lifted representations

❖ Policy Learning

➢ Supervised learning to learn map of demonstration states to actions

❖ Subgoal Sampler Learning

➢ Supervised learning to learn mapping from initial state to subgoal state

Proposed Approach: Learning Neuro-Symbolic Skills 
From Demonstrations
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Experimental Setup: Domains

[1]
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Experimental Setup: Baselines

❖ BPNS No Subgoal

❖ GNN-Meta

❖ GNN-Meta No Subgoal

❖ GNN BC

❖ Samples=1

❖ Abstract Plans =1
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Experimental Setup: Questions to Answer

❖ Q1: How many train tasks are required to solve holdout tasks well?

❖ Q2: How well does it generalize to unseen numbers of objects?

❖ Q3: Can this learn skills which complement general purpose skills?

❖ Q4: How important is the ability to sample multiple sub-goals for KD1?

❖ Q5: How important is it to be able to generate multiple abstract plans 

for KD2?
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Experimental Setup: Evaluation Metric

How many evaluation tasks can be solved
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Experimental Results: Main Results

[1]
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Experimental Results: Time Analysis with Ablations

[1]
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Discussion of Results: Question Answers
❖ Q1: How many train tasks are required to solve holdout tasks well?

➢ 100-250

❖ Q2: How well does it generalize to unseen numbers of objects?

➢ Well

❖ Q3: Can this learn skills which complement general purpose skills?

➢ Yes

❖ Q4: How important is the ability to sample multiple sub-goals for KD1?

➢ Quite

❖ Q5: How important is it to be able to generate multiple abstract plans for KD2?

➢ Quite
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Discussion of Results: Strengths & Weaknesses

❖ Strengths:
➢ Compares to and out-performs GNN-Meta which is pretty relevant 

and recent solution
➢ Compare in environments that are not seemingly fabricated to 

inherently be better than compared baselines
❖ Weaknesses:

➢ GNN-Meta didn’t really seem to perform that well on the harder 
tasks
■ Perhaps GNN-Meta was a cherry picked baseline
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Critique & Limitations

❖ Say at the beginning that they want to evaluate the number of 
tasks before wall clock timeout, but they never actually check 
that
➢ Makes me wonder if it was actually slower but more 

successful on evaluation tasks?
❖ Assumes fully observable and deterministic states – limits 

applications
❖ Evaluating the predicates in real world scenarios is non-trivial
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Future Work for Paper

❖ Incorporate closed loop with other work that learns predicates from skills with this learning 

skills from predicates, to try to invent new skills/predicates

○ Authors have already begun work on this showing that in the cover environment that 

new predicates can be generated only starting with the goal predicate of Covering. It 

should be noted that some important predicates like Holding were not generated

❖ Try to evaluate predicates in real scenarios rather than assuming oracle predicate evaluator

❖ Try to learn the set of symbols concurrently?
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Extended Readings

❖ Leveraging Approximate Symbolic Models for Reinforcement Learning via 

Skill Diversity [6]

❖ Learning Symbolic Operators for Task and Motion Planning [3]

❖ Learning Multi-Object Symbols for Manipulation with Attentive Deep Effect 

Predictors [7]

❖ Neurosymbolic Learning for Robust and Reliable Intelligent Systems [8]

❖ Safe Neurosymbolic Learning with Differentiable Symbolic Execution [9]
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Summary

❖ Want to learn, rather than construct, policies for neuro-symbolic skills for bilevel planning

❖ Allows for efficient AI planning algorithms, but state abstractions are lossy

❖ Policies for neuro-symbolic skills were hand-made, if any part of the skill was learned at all

❖ Able to address some of the loss that occurs by abstracting physical states to predicate 

representations, through sub-goal sampling and considering more than one skill sequence

❖ Generalizes to varying numbers of objects in the environment – skill predicates are robust to changes 

in number of variables it might have to consider
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